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ABSTRACT. It is clear that the number of distinct representations of a number 
n as the sum of two primes is at most the number of primes in the interval 
[n/2, n - 2] . We show that 210 is the largest value of n for which this upper 
bound is attained. 

1. INTRODUCTION 

In 1742 Christian Goldbach wrote, in a letter to Euler, that on the evidence 
of extensive computations he was convinced that every integer exceeding 6 was 
the sum of three primes. Euler replied that if an even number 2n + 2 is so 
represented then one of those primes must be even and thus 2, so that every 
even number 2n, greater than 2, can be represented as the sum of two primes; 
it is easy to see that this conjecture implies Goldbach's original proposal, and 
it has widely become known as Goldbach's conjecture. 

Although still unresolved, Goldbach's conjecture is widely believed to be true. 
It has now been verified for every even integer up to 2 x 1010 (in [3]), and there 
are many interesting partial results worthy of mention. 

In 1930, Snirel'man [8] proved the existence of an integer k such that every 
integer larger than 1 may be written as the sum of at most k primes (recently 
Ramare [5] has shown that every positive even integer is the sum of at most 6 
primes). 

In 1937, I. M. Vinogradov [9] showed that every sufficiently large odd integer 
n may be written as the sum of three primes (recently Chen Jing-run and Wang 
[2] have shown this for all n > 1043,000 ). 

In 1966, Chen Jing-run [1] showed that every sufficiently large even integer 
n may be written as the sum of a prime and a number that has at most two 
prime factors. 

In 1975, Montgomery and Vaughan [4] showed that there exist constants 
c > 0 and a > 0 such that there are no more than cx1- even integers n < x 
that cannot be written as the sum of two primes. 

Define g(n) to be the number of representations of n as p + q with p > q . 
Goldbach's conjecture may be rephrased as g(n) > 0 for all even n > 2; in 
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other words, the 'trivial' lower bound does not hold with equality for any even 
n > 2. A 'trivial' upper bound for g(n) is given by the possibility that, for 
every prime q in the range n/2 < q < n - 2, we have n - q prime, so that 

(1) g(n) <7r(n - 2) -7r( n - 2)' 
where 7(x) denotes the number of primes up to x . In analogy with Goldbach's 
conjecture, the fourth-named author conjectured that n = 210 is the largest 
value for which equality holds. In what follows we prove this conjecture. 

Theorem. The number 210 is the largest positive integer n that can be written 
as the sum of two primes in z7(n - 2) - z(In - I) distinct ways. 

The only other possibilities arise when n < 8, or 21n and n < 18, or 2 x 31n 
and n < 48, or 2 x 3 x 51n and n < 90. 

It is amusing that the equality g(210) = 7r(208) - i(104.5) may be verified 
mentally, since if p is prime and 105 < p < 208, then 2 < 210 - p < 105 and 
210 -p is coprime to 2, 3, 5, 7 (since 210 = 2 x 3 x 5 x 7), so 210 -p is also 
prime. 

2. BERTRAND'S POSTULATE FOR ARITHMETIC PROGRESSIONS 

To see the relevance of Bertrand's postulate to our problem, we first deal 
with the case that n is odd. By a minor modification of the standard proof of 
Bertrand's postulate, it is easy to show that for every odd integer n > 9, there 
exists a prime p in the range (n + 1)/2 < p < n - 4; but then n - p is even 
and n - p > 2, and therefore n - p is not prime, so that equality fails in (1). 
We then check that equality holds in (1) for each odd n < 9. (The case of odd 
n is actually reproved below as part of the general case.) 

This same idea may be carried over to primes in arithmetic progressions: If, 
for a given prime q, there exists a prime p in the range n/2 < p < n - q which 
belongs to the arithmetic progression n modulo q, then n - p is divisible by 
q but n - p > q and so n - p cannot be prime; and therefore equality fails in 
(1). This can be rephrased as follows. 

Lemma 1. Suppose that equality holds in (1) for n. If q is a prime such that 
for each a, 1 < a < q - 1, there exists a prime p _ a (mod q) with n/2 < 
p < n - q, then q divides n. 

A straightforward consequence of this is the following result. 

Lemma 2. Suppose that we are given positive integers x, y, z, and sets ofprimes 
Y and S with the following properties: 

(i) the primes in S are all at most z, and their product exceeds 2x; 
(ii) each prime in Y lies in the interval [x, x + y]; 

(iii) for each prime q e e and each integer a, 1 < a < q - 1, there exists 
a prime p e x with p _ a (mod q). 

Then equality fails in (1) for every integer n in the interval (x + y + z, 2x] . 

Proof. Suppose that equality holds in (1) for some n in (x + y + z, 2x]. By 
(iii), and the ranges for p e Y and q e e given in (ii) and (i) respectively, we 
can invoke Lemma 1 to show that q divides n for each q e e. But then n is 
divisible by the product of all of the primes in , so that n < 2x contradicts 
(i). E 
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Using tools of analytic number theory, we can then deduce the following 
weak version of our theorem. 

Proposition. There exists an effectively computable constant nO such that equal- 
ity fails in (1) for n > no - 

Proof. It is well known that one can give an effective uniform estimate for the 
number of primes p < x with p _ a (mod q), provided q < (log x)2-8, 
for some fixed e > 0. With e = 1/2, these estimates are strong enough to 
imply that there exists an effectively computable xo such that, if x > xo, then 
the hypothesis of Lemma 2 holds for y = x/2, 0 the set of primes up to 
z = 2logx, and 9 the set of primes in the interval [x, 3x/2]. El 

In the next section we will give a different proof of the Proposition. This 
new proof will have the advantage that we will obtain no = 2 x 1024, whereas 
we were only able to get no = 10520 by the methods of this section (one could 
do much better here if one assumed the Generalized Riemann Hypothesis). 
Lemma 2 is, however, useful for computation, and we will use it to close the 
gap between 210 and 2 x 1024 . 

3. SIEVE METHODS 

Either Brun's sieve or Selberg's sieve may be used to prove the estimate 
g(n) = O(n log log n/log2 n) . Then, as z7(n - 2) - z(l n - 1) > n/ log n by the 
Prime Number Theorem, this implies that equality fails in (1) for sufficiently 
large n, so providing another proof of the Proposition. We will now make this 
proof explicit so as to obtain no = 2 x 1024 in the Proposition. 

Combining (2.4) and (3.20) of [6], we have for n > 2e48 that 

(2) g(n) < 10.57K,c n/2 whereKc,n= t p - 1 
(8.21 ? log(n/2)) log(n/2) pin, p>2p-2 

From this we shall deduce the following result. 

Lemma 3. If n > 2 x 1024, then 

(3) g(n) < 0.961 n12 
log(n/2)' 

Theorem 2 of [7] implies that 

7r(n - 2) -7 ( 2n - 2 ) > 0.96 1 1( 2) 2 2 ~~log(n/2) 

for n > e50; combining this with Lemma 3, we can deduce a value for no in 
the Proposition above: 

Explicit Proposition. Equality fails in (1) for n > 2 x 1024. 

It remains only to give a 

Proof of Lemma 3. First note that if n is odd, then g(n) < 1 , so that the lemma 
holds trivially in this case. Thus assume n = 2N is even. Let Pi = 3, P2 = 

5, p3 = 7, ... be the sequence of odd primes, and let Nj be the product of 
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the first j of them. Suppose that 1024 < N < N18 so that N has at most 17 
distinct odd prime divisors. Thus, as logN > 55, 

10.57KN < 10.57KNI7 < 0.96, 
8.21 + logN - 8.21 + 55 

and so (3) follows from (2) for such values of N. 
Now, if N> N18, then there exists a value of j ? 18 for which Nj < N < 

Nj+I, so that KN/(8.21 + log N) < KNl/(8.21 + log Nj) . Lemma 3 then follows 
from 

(4) 10.57 KN, < 0.961 for j > 18. 
8.21?+log N1 

To see (4), first note that it holds for j = 18 by direct computation. Further, 
the sequence on the left of (4) is decreasing for j > 4. This is seen by noting 
that the ratio of consecutive terms is 

(5) ~~~~pj- I 8.21 + log Nj- 
pj(-2 8.21 + log Nj 

But, Nj-l < 3 x 5 x 7 x 9 x ...xx pj-l < )(p--1)/2 <p p,-3/e8.21 forj > 4 so 
the expression in (5) is less than 1 . This completes the proof of Lemma 3. El 

4. COMPUTATIONS 

In order to complete the proof of the theorem, we need to fill the gap left by 
the Explicit Proposition of the previous section. We performed some computa- 
tions to achieve this: 

Computational Proposition. Equality fails in (1) for each n in the range 210 < 
n < 2x1024. 

At first sight it might seem possible to rule out each n in this range by simply 
finding a prime p, n/2 < p < n - 2, such that n - p is not prime; however 
doing 2 x 1024 such searches is prohibitively expensive. 

Lemma 2 can evidently be used to quickly rule out wide ranges of values of 
n . One way to use Lemma 2 is to choose z = 2 log x. Then we search through 
x, x + 1, x + 2, ... for primes for the set Y?. Each time we find such a p we 
note, for each q < z, the residue class in which p belongs, modulo q . A weak 
heuristic argument suggests that by the time we have searched (for elements of 
Y ) as far as x + (log x)2+-, we will certainly have found a set E satisfying 
both (i) and (iii) of Lemma 2. 

In practice this works fine for small values of x, but for x around, say, 
1020, it becomes very slow to test each of the integers x, x + 1, x + 2, ... for 
primality. To be sure, it is still easy to pick out the 'industrial grade primes' 
using a Fermat test, but proving these numbers prime begins to become time- 
consuming. However, there are some extremely fast primality tests for integers 
of certain special types, one such being the following. 

Proth primality test (1878). If p =1 (mod 2k) where 2k > fpf, and if there 
exists an integer a for which a(P- 1)/2 = -1 (mod p), then p is prime. 

So, in order to use Lemma 2, we choose k so that 2k > 2x and then 
search the interval [x, x + y] for primes p 1_ (mod 2k) using the Proth 
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primality test, checking whether any of the primes a < 47 satisfies the criterion 
a(P- /1 =_ -1 (mod p). (If some such a satisfies a(P-1)/2 0 ?1 (mod p), 
we of course discard p, since it is composite. If each prime a < 47 satisfies 
a(P-1)/2-= 1 (mod p), we also discard p .) 

Enrico Bombieri kindly programmed the above in C for us (for which we 
would like to thank him), using a multiprecision routine. For simplicity's sake 
he applied Lemma 2, using the first construction above, nineteen times, to rule 
out all n in the range 210 < n < 9, 330, 712. Then he used the second 
construction above (that is, using Proth's test) for all remaining n, which took 
a further sixty-three applications of Lemma 2. In all cases the set 3 contained 
at most 465 elements (which corresponds to searching for primes through about 
5 log2 x numbers around x ), and we had z < 67. The total run time on a Sparc 
2 was just under 75 minutes. A copy of the computer code is available upon 
request from the second-named author. 
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